Automatic no-reference image quality assessment
نویسندگان
چکیده
No-reference image quality assessment aims to predict the visual quality of distorted images without examining the original image as a reference. Most no-reference image quality metrics which have been already proposed are designed for one or a set of predefined specific distortion types and are unlikely to generalize for evaluating images degraded with other types of distortion. There is a strong need of no-reference image quality assessment methods which are applicable to various distortions. In this paper, the authors proposed a no-reference image quality assessment method based on a natural image statistic model in the wavelet transform domain. A generalized Gaussian density model is employed to summarize the marginal distribution of wavelet coefficients of the test images, so that correlative parameters are needed for the evaluation of image quality. The proposed algorithm is tested on three large-scale benchmark databases. Experimental results demonstrate that the proposed algorithm is easy to implement and computational efficient. Furthermore, our method can be applied to many well-known types of image distortions, and achieves a good quality of prediction performance.
منابع مشابه
A Machine Learning Approach to No-Reference Objective Video Quality Assessment for High Definition Resources
The video quality assessment must be adapted to the human visual system, which is why researchers have performed subjective viewing experiments in order to obtain the conditions of encoding of video systems to provide the best quality to the user. The objective of this study is to assess the video quality using image features extraction without using reference video. RMSE values and processing ...
متن کاملReduced-Reference Image Quality Assessment based on saliency region extraction
In this paper, a novel saliency theory based RR-IQA metric is introduced. As the human visual system is sensitive to the salient region, evaluating the image quality based on the salient region could increase the accuracy of the algorithm. In order to extract the salient regions, we use blob decomposition (BD) tool as a texture component descriptor. A new method for blob decomposition is propos...
متن کاملSparsity Based No-Reference Image Quality Assessment for Automatic Denoising
In image and video denoising, a quantitative measure of genuine image content, noise, and blur is required to facilitate quality assessment, when the ground-truth is not available. In this paper, we present a no-reference image quality assessment for denoising applications, that examines local image structure using orientation dominancy and patch sparsity. We propose a fast method to find the d...
متن کاملDAF: Differential ACE Filtering Image Quality Assessment by Automatic Color Equalization
Ideally, a quality assessment system would perceive and measure image or video impairments just like a human being. But in reality, objective quality metrics do not necessarily correlate well with perceived quality [1]. Plus, some measures assume that there exists a reference in the form of an “original” to compare to, which prevents their usage in digital restoration field, where often there i...
متن کاملA Novel Image Structural Similarity Index Considering Image Content Detectability Using Maximally Stable Extremal Region Descriptor
The image content detectability and image structure preservation are closely related concepts with undeniable role in image quality assessment. However, the most attention of image quality studies has been paid to image structure evaluation, few of them focused on image content detectability. Examining the image structure was firstly introduced and assessed in Structural SIMilarity (SSIM) measu...
متن کامل